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A shrinking core model is presented for the galvanostatic discharge of a metal hydride particle. A quantitative criterion for when
the shrinking core can be completely neglected or approximated by a pseudosteady-state solution is presented. The effect of shrink-
ing of the core on the discharge behavior of a metal hydride particle is also studied.
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Metal hydride particles are used to make negative electrodes1-3 in
nickel/metal hydride batteries. The performance of these electrodes is
affected by both the kinetics of the processes occurring at the metal-
electrolyte interface and the hydrogen diffusion within the bulk of the
metal alloy particle. Two different phases exist in the metal hydride par-
ticles. The hydriding or charging process of metal hydride particles was
discussed in detail in Ref. 4 where equations governing the diffusion of
hydrogen in the particle during charging (hydriding) were derived from
the fundamental laws of mass and momentum transfer. Zhang et al.4

were the first to develop rigorous boundary conditions based on jump
balances. They provided a closed-form solution for the charging of
metal hydride electrodes assuming a known (constant) concentration at
the surface. They derived expressions describing the motions of the a-
b interface and the weight fraction of hydrogen entering the electrode
particle from the electrolyte. They predicted that for particles of small-
er radius and smaller diffusion coefficients, the pseudosteady-state
(PSS) solution5-12 does not provide an accurate solution of the govern-
ing equations. Unfortunately, their model cannot be used to predict the
effect of applied current density on the concentration profiles and
charge/discharge curves for the metal hydride electrodes.

The discharge process of a metal hydride particle includes a
phase change as shown schematically in Fig. 1. In the fully charged
state (Fig. 1a) the metal hydride particle is in the b phase. The dis-
charge process begins when the adsorbed hydrogen (Hads) at the sur-
face of the particle reacts electrochemically with hydroxide ions as
follows

discharge
Hads 1 OH2 r H2O 1 e2 [1]

The consumption of the adsorbed hydrogen at the surface promotes
the formation of the a phase (hydrogen-depleted metal hydride ma-
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terial) as shown in Fig. 1b. Next, the adsorbed hydrogen that is con-
sumed at the surface of the particle is replenished by diffusion of hy-
drogen atoms from the metal hydride b phase through the a phase to
the surface. The discharge process is complete when the hydrogen
from the metal hydride material has been consumed and the particle
consists of the a phase only. The discharge process was modeled
approximately by Lei and Wang et al.13,14

In this paper shrinking of the b phase core is modeled assuming
a constant applied current at the particle surface. This provides a
means for one to predict the effect of applied current density on the
concentration profiles and discharge curves. A closed-form time-
dependent solution for the hydrogen concentration and the interface
position is developed for the discharge process. Then, using the
anodic polarization equation, surface potential is calculated. A quan-
titative criterion for when the shrinking b phase core can be com-
pletely neglected (i.e., replaced by simple spherical diffusion) or
approximated by a PSS solution is developed and presented.

Mathematical Model for the Discharge Process

The discharge of a spherical metal hydride particle is assumed to
follow the sequence described previously (see Fig. 1). The assumed
picture of the hydrogen concentration inside the particle electrode
shortly after discharge begins is presented in Fig. 2a. The hydrogen
within the metal hydride is initially at a concentration c0. Upon dis-
charge, hydrogen is depleted from the surface of the particle where
the concentration is cs. The concentration at the interface between
the a and b phases is ca. As the particle is discharged, the core of
fully hydrided material (b phase) shrinks, as shown in Fig. 2b. The
concentration c(r) in the a phase (rc # r # Rp) decreases continu-
ously from ca (at the interface) to cs at r 5 Rp, as shown in Fig. 2b.
The concentration of the hydrogen in the b phase is assumed to
remain constant at c0.

The concentration distribution of the hydrogen atoms in the a
phase is governed by
Figure 1. Schematic representation of the shrinking core during the discharge of a metal hydride particle: (a, left) b phase (completely charged state), (b, mid-
dle) a 1 b phase, and (c, right) a phase (completely discharged state).
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Figure 2. Concentration profiles inside in
a spherical metal hydride electrode: (a, far
left) shortly after discharge begins and (b,
left) near the end of discharge.
[2]

where we have assumed that the diffusion coefficient for hydrogen
atoms in the a phase, Da, is a constant. The initial condition is
known (completely charged, Fig. 1a). That is

c 5 c0 t 5 0, 0 # r # Rp [3]

The surface boundary condition is given by the current density ap-
plied at the surface

[4]

where i is the applied current density at the surface. The concentra-
tion at the moving interface (a/b interface) is assumed to be a known
constant13 (Fig. 2)

c 5 ca t > 0, r 5 rc [5]

where rc, the shrinking core interface position, depends on time. The
motion of the interface is governed by the mass flux at the interface13

[6]

with the initial condition rc 5 Rp at t 5 0, and c0, ca are known con-
stants. The following dimensionless variables are introduced for
convenience

[7]

Substituting these dimensionless variables into Eq. 2 yields

[8]

and the initial and boundary conditions become

at t 5 0 for 0 # x # 1 C 5 C0 [9]

[10]

for t > 0, x 5 xc C 5 1 [11]
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where C0 is the dimensionless initial concentration, and d is the
dimensionless current density, which can be thought of as the reac-
tion rate relative to the diffusion rate and is given by

[12]

The interface position is given by

[13]

where

[14]

with the initial value of xc 5 1 at t 5 0. The dimensionless concen-
tration profile C in the a phase depends on the interface position xc
and hence depends on the parameter k. The applied current density
in Eq. 12 can be expressed in terms of applied current per gram of
the particle

[15]

where r is the density of the particle and I is the applied current per
gram of the particle. Equation 15 can be used to modify Eq. 12

[16]

The boundary condition at x 5 1 is not homogeneous and sug-
gests a transformation of the form15

C 5 u(x, t) 1 w(x) [17]

This transformation simplifies the problem to

[18]
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at x 5 xc w 5 1 [19]

[20]

Using these boundary conditions w can be solved to give

[21]

and

[22]

with the initial and boundary conditions

[23]

[24]

for t > 0, x 5 xc u 5 0 [25]

Now u can be solved with these homogeneous boundary conditions
by separation of variables15 to give

[26]

where the eigenvalue ln is given by

tan[ln(1 2 xc)] 5 ln n 5 1, 2, ..., ` [27]

The constant Bn can be found by using the initial condition and the
procedure demonstrated in Ref. 15. After applying the initial condi-
tion and transforming back to dimensionless concentration C

[28]

where

[29]

and xc is obtained by integrating Eq. 13 as explained in the
following.

Solution Procedure

Equation 28 is an analytical solution that depends on xc, which
also depends on time. Consequently, to obtain C(x, t) for given para-
meter values (c0, ca, I, k, r, Rp, and Da, see Table I), the first step is
to set xc equal to a value (0.99, e.g.) and solve Eq. 27 for the first five
(say) eigenvalues (ln, n 5 1, 5). Next, decrement xc (0.98, e.g.) and
solve again for the first five eigenvalues from Eq. 27. This procedure
was repeated for xc down to 0. The value for the first five eigenval-
ues obtained in this manner are presented in Fig. 3. These results are
replotted in Fig. 4 to show that the eigenvalues are linearly related to
1/(1 2 xc).

Next, Eq. 13 is integrated numerically by explicit stepping. This
process can be carried out by specifying a value for Dt and using the
following equation
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where xc(t 5 0) 5 1 and the gradient in Eq. 30 is obtained from
Eq. 28. This process can be continued until the dimensionless sur-
face concentration becomes zero.

Pseudosteady-State Solution (PSS)
A PSS is obtained by assuming that at a particular time, for a partic-
ular value of the shrinking core radius, xc, the concentration profiles

Table I. Parameters used.

Parameters Values Reference

c0 091.3 3 1023 mol/cm3 16
ca 010.7 3 1023 mol/cm3 Assumed
Da 000.1 3 10210 mol 16
Q 310 mAh/g 16
I0 014.24 mA/g 16
k (from Eq. 14) 000.1316 13
Rp 005 mm 16
T 298 K Assumed
a 000.5 16
f0 20.923 V (vs. Hg/HgO) 16
Crate 310 mA/g (d 5 19.52) 16
r 007.8 g/cm3 Assumed

Figure 3. A plot of the first five eigenvalues as a function of dimensionless
interface position.

Figure 4. A plot of first five eigenvalues as a function of 1/(1 2 xc ).
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inside the particle are at steady state. This solution is obtained by
equating the left side of Eq. 8 to zero which yields (see Eq. 21)

[31]

Substituting this solution into Eq. 13 followed by integration yields

[32]

which is plotted in Fig. 5 for comparison to the complete model. The
PSS solution for the dimensionless concentration can be explicitly
written in terms of dimensionless time as follows

[33]

Also, by substituting the right side of Eq. 16 into Eq. 33 we get the
dimensional form

[34]

and the surface concentration is given by substituting r 5 Rp into
Eq. 34

[35]

Equation 35 is the same as that presented by Lei et al.13 This PSS
solution (Eq. 35) is compared to the exact transient solution and its
validity is discussed in the following section. The dimensionless
time for complete discharge according to this PSS model can be
found by equating the surface concentration (x 5 1 in Eq. 33) to zero

[36]

Discharge Curves

The kinetics at the surface of the particle can be written as an
anodic process13
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Figure 5. Dimensionless interface position as a function of dimensionless
time for various values of d during discharge (k 5 0.316).
where Cs is the dimensionless surface concentration and I0 is the ex-
change current per unit mass. The potential at the surface is given by16

E(V) (vs. Hg/HgO) 5 f0 1 h [38]

Equations 37 and 38 are used to predict the discharge curves. The
procedure consists of first setting I and the parameter values c0, ca,
k, r, Rp, and Da followed by solving the governing equations to ob-
tain Eq. 28, which can be solved for Cs(t) by setting x 5 1. Next,
once values have been set for I0, f0, a, and t, Eq. 37 can be used to
solve for h(t), which upon substitution into Eq. 38 yields E(t). For
an applied current (I A/g), the surface concentration, Cs(t), is found
from Eq. 28 and substituted into Eq. 37. For a particular time t and
Cs, h is solved using Maple’s fsolve command. Once the overpoten-
tial h is found, Eq. 38 is used to find the potential. This procedure is
repeated until a cutoff potential of E 5 20.5 V is reached.

Results and Discussion

Figure 3 shows at the beginning of the discharge, when xc is
almost 1, all the eigenvalues are very big and the exact transient
solution given by Eq. 28 reduces to the PSS solution (Eq. 30). This
is true because the eigenvalues are large and consequently, the sum-
mation terms in the series in Eq. 28 become negligible.

Figure 5 presents both the exact transient solution developed here
and the PSS solution given by Eq. 31. As can be seen in Fig. 5, the
PSS solution underpredicts the time for the core to shrink for d $ 1,
but for low values of the parameter (d # 0.5), both PSS and transient
solution coincide.

A plot of the dimensionless concentration profile inside the
shrinking core particle is presented in Fig. 6. For an applied current
(d 5 1), at very low times, the concentration near the surface of the
particle is close to Ca. As time increases, the surface concentration
depletes very fast and the core shrinks. The concentration inside the
core (i.e., inside the b phase) remains constant at C0 (see Fig. 2).

A plot of the dimensionless surface concentration is presented in
Fig. 7. As expected, the surface concentration is depleted faster for
higher discharge rates (d). Also, we observe that the discharge time,
which is the time taken for surface concentration to reach approxi-
mately zero, is highly dependent on the dimensionless current den-
sity, d. Another approximate solution to the problem can be obtained
by ignoring the shrinking core b phase followed by solving the dif-
fusion equation (Eq. 2), with the same initial and boundary condition
(Eq. 3 and 4) and Eq. 5 is replaced by symmetry boundary condition
(flux 5 0 at the center of the particle). The solution for this problem
can be conveniently obtained by separation of variables.15 The error
in discharge time can be written as

Figure 6. Dimensionless concentration profiles in the a phase at various
times for d 5 1.
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[39]

Similarly the error in PSS model can be represented as

[40]

Note that errors are predicted for both approximate models for
d > 1 (Fig. 8). The error in approximating the shrinking core with the
PSS solution is less than 10% for d < 5 (i.e., rates less than C/4 for
Rp 5 5 mm particle). However for d > 5, the error shoots up and we
observe more than 10% error. For 2C discharge (d 5 40) the error in
approximating the shrinking core with a PSS solution shoots up to
50% error.

Figure 8 illustrates clearly that the shrinking core cannot be ne-
glected at high values of d, which could be due to high values of ap-
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Figure 7. Surface concentration (dimensionless) as a function of dimension-
less time for various values of d.

Figure 8. Error in neglecting or approximating shrinking core model.
plied current (I ), large values of Rp, or small values of Da. This
analysis also shows that the PSS solution could be used cautiously
for small values of d. For discharge rates less than C/4, PSS could be
used with a 10% error. For discharge rates higher than C/4, the PSS
solution should not be used. Note that the predictions depend on k,
which has not been varied in this paper.

Discharge curves for different discharge rates are plotted in
Fig. 9. The state of discharge (SOD) is defined here as

[41]

As expected, for higher discharge rates the particle discharges
faster (E reaches 20.5 V in less time). Also, we observe that for very
low rates (rates less than C/10), the predicted SOD of the electrode
is approximately the same as that for a spherical particle (Fig. 10).
However, with increasing discharge rates, the SOD of the particle at
(E 5 20.5 V) with a shrinking core is much less than that predicted
by the spherical particle model (Fig. 10), because hydrogen remains
in the b phase and does not react at high discharge rates. Thus, for
predicting the utilization accurately, especially at high discharge
rates, the shrinking core model should be used. Also, at high dis-
charge rates ohmic losses dominate and should be added for more
accurate predictions.

Conclusions
A shrinking core model for the discharge of a metal hydride par-

ticle is presented. A PSS model is also presented. The predicted re-
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Figure 9. Effect of discharge rates on the surface potential: discharge curves
on a shrinking electrode.

Figure 10. Discharge curves in a spherical electrode.
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sults from the models show that the PSS approximation can be used
cautiously for rates less than C/4 (for a 5 mm particle). However, for
discharge rates higher than C/4, the PSS model should not be used.
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List of Symbols
An coefficient in the solution
Bn coefficient in the solution
c concentration, mol/cm3

c0 initial concentration (completely charged state), mol/cm3

cs surface concentration, mol/cm3

ca concentration at the a/b interface, mol/cm3

C dimensionless concentration, c/ca
Crate rate of discharge, I 5 310 mA/g
CPSS dimensionless pseudosteady-state concentration
C0 dimensionless initial concentration, c0/ca
Cs dimensionless surface concentration, cs/ca
Da diffusion coefficient in the a phase, cm2/s
e electron
E applied potential (V vs. Hg/HgO)
i applied current density, A/cm2

I applied current, A/g
I0 exchange current, A/g
k dimensionless constant, 1/C0 2 1
n index
r radial position, cm
rc radial position of the a/b interface, cm
R gas constant, 8.314 J/mol/K
Rp metal alloy particle radius, cm
t time, s
u dependent variable
w dependent variable
x number of reactant atoms per unit of product; fractional conversion
xc dimensionless interface position, rc/Rp

Greek
a solid metal phase
a transfer coefficient, 0.5
b unreacted metal hydride phase
d dimensionless current density
l eigenvalue
r mass density of particle, g/cm3

t dimensionless time
tdisch discharge time, dimensionless
h overpotential, V vs. Hg/HgO

Subscripts and superscripts
ads adsorbed
H hydrogen
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